
Introduction
The solution to i18n

l10n using gettext

INTERNATIONALIZATION
THINGS ABOUT LOCALE, UNICODE, GETTEXT, ETC.

陈宇飞

Email: cyfdecyf@gmail.com

南京大学

2007年 3月 25日

陈宇飞 Email: cyfdecyf@gmail.com Internationalization

Introduction
The solution to i18n

l10n using gettext

WHAT I WILL TALK ABOUT

locale环境变量对系统有什么影响
怎样在程序中使用 locale信息
什么是 Unicode,它和 UTF-8, UTF-16是什么关系
怎样使你的程序使用 Unicode从而支持中文
怎样使程序在不同的语言环境下以不同的语言输出消息

陈宇飞 Email: cyfdecyf@gmail.com Internationalization

Introduction
The solution to i18n

l10n using gettext

WHAT I WILL TALK ABOUT

locale环境变量对系统有什么影响
怎样在程序中使用 locale信息
什么是 Unicode,它和 UTF-8, UTF-16是什么关系
怎样使你的程序使用 Unicode从而支持中文
怎样使程序在不同的语言环境下以不同的语言输出消息

陈宇飞 Email: cyfdecyf@gmail.com Internationalization

Introduction
The solution to i18n

l10n using gettext

WHAT I WILL TALK ABOUT

locale环境变量对系统有什么影响
怎样在程序中使用 locale信息
什么是 Unicode,它和 UTF-8, UTF-16是什么关系
怎样使你的程序使用 Unicode从而支持中文
怎样使程序在不同的语言环境下以不同的语言输出消息

陈宇飞 Email: cyfdecyf@gmail.com Internationalization

Introduction
The solution to i18n

l10n using gettext

WHAT I WILL TALK ABOUT

locale环境变量对系统有什么影响
怎样在程序中使用 locale信息
什么是 Unicode,它和 UTF-8, UTF-16是什么关系
怎样使你的程序使用 Unicode从而支持中文
怎样使程序在不同的语言环境下以不同的语言输出消息

陈宇飞 Email: cyfdecyf@gmail.com Internationalization

Introduction
The solution to i18n

l10n using gettext

WHAT I WILL TALK ABOUT

locale环境变量对系统有什么影响
怎样在程序中使用 locale信息
什么是 Unicode,它和 UTF-8, UTF-16是什么关系
怎样使你的程序使用 Unicode从而支持中文
怎样使程序在不同的语言环境下以不同的语言输出消息

陈宇飞 Email: cyfdecyf@gmail.com Internationalization

Introduction
The solution to i18n

l10n using gettext
Background information

OUTLINE

1 INTRODUCTION
Background information

2 THE SOLUTION TO I18N
Standard C and POSIX’s solution
Unicode

Introduction to Unicode
UTF-8 and UTF-16
Make your program support Unicode

3 L10N USING GETTEXT
Overview of getext
How to use gettext
Other libraries or tools for l10n

陈宇飞 Email: cyfdecyf@gmail.com Internationalization

Introduction
The solution to i18n

l10n using gettext
Background information

OUTLINE

1 INTRODUCTION
Background information

2 THE SOLUTION TO I18N
Standard C and POSIX’s solution
Unicode

Introduction to Unicode
UTF-8 and UTF-16
Make your program support Unicode

3 L10N USING GETTEXT
Overview of getext
How to use gettext
Other libraries or tools for l10n

陈宇飞 Email: cyfdecyf@gmail.com Internationalization

Introduction
The solution to i18n

l10n using gettext
Background information

THE CENTRAL CONCEPT ABOUT

INTERNATIONALIZATION

locale — The place in which a program is run. It
encapsulates the following information:

local character set
how to format and display monetary amounts
how to format numeric values

一些 locale值: C, en_US, zh_CN, zh_CN.GBK

陈宇飞 Email: cyfdecyf@gmail.com Internationalization

Introduction
The solution to i18n

l10n using gettext
Background information

OTHERS TERMS ABOUT INTERNATIONALIZATION

Internationalization (i18n)
The process of writing (or modifying) a program so that it
can function in multiple locales.
Localization (l10n)
The process of tailoring an i18n program for a specific
locale.
Globalization (g11n)
Prepare all possible localizations for an i18n program.
Make it for global use.

陈宇飞 Email: cyfdecyf@gmail.com Internationalization

Introduction
The solution to i18n

l10n using gettext
Background information

OTHERS TERMS ABOUT INTERNATIONALIZATION

Internationalization (i18n)
The process of writing (or modifying) a program so that it
can function in multiple locales.
Localization (l10n)
The process of tailoring an i18n program for a specific
locale.
Globalization (g11n)
Prepare all possible localizations for an i18n program.
Make it for global use.

陈宇飞 Email: cyfdecyf@gmail.com Internationalization

Introduction
The solution to i18n

l10n using gettext
Background information

OTHERS TERMS ABOUT INTERNATIONALIZATION

Internationalization (i18n)
The process of writing (or modifying) a program so that it
can function in multiple locales.
Localization (l10n)
The process of tailoring an i18n program for a specific
locale.
Globalization (g11n)
Prepare all possible localizations for an i18n program.
Make it for global use.

陈宇飞 Email: cyfdecyf@gmail.com Internationalization

Introduction
The solution to i18n

l10n using gettext
Background information

关于字符集的三个基本的概念

Character Set —字符集
字符与整数之间的映射
如果字符集的定义中每一个字符使用超过 8 bit的整数，则
该字符集被称为 Multibyte Character Set
Character set encoding —字符集编码
将字符集中整数转换到其他形式以在计算机中表示
对字符集中整数值进行编码的目的是为了更好的保存和传输
字符

Language
定义字符集中字符的使用规则
例如：字符对应的大写或小写形式，字符的顺序等

陈宇飞 Email: cyfdecyf@gmail.com Internationalization

Introduction
The solution to i18n

l10n using gettext
Background information

关于字符集的三个基本的概念

Character Set —字符集
字符与整数之间的映射
如果字符集的定义中每一个字符使用超过 8 bit的整数，则
该字符集被称为 Multibyte Character Set
Character set encoding —字符集编码
将字符集中整数转换到其他形式以在计算机中表示
对字符集中整数值进行编码的目的是为了更好的保存和传输
字符

Language
定义字符集中字符的使用规则
例如：字符对应的大写或小写形式，字符的顺序等

陈宇飞 Email: cyfdecyf@gmail.com Internationalization

Introduction
The solution to i18n

l10n using gettext
Background information

关于字符集的三个基本的概念

Character Set —字符集
字符与整数之间的映射
如果字符集的定义中每一个字符使用超过 8 bit的整数，则
该字符集被称为 Multibyte Character Set
Character set encoding —字符集编码
将字符集中整数转换到其他形式以在计算机中表示
对字符集中整数值进行编码的目的是为了更好的保存和传输
字符

Language
定义字符集中字符的使用规则
例如：字符对应的大写或小写形式，字符的顺序等

陈宇飞 Email: cyfdecyf@gmail.com Internationalization

Introduction
The solution to i18n

l10n using gettext
Background information

为什么国际化如此困难

计算机发展的初期没有考虑过这个问题，仅仅提供了英语的
支持，一个字节最多只能表示 256个字符
全世界许多的书写系统，而不同书写系统规则差异很大

字母 vs.表意文字
从左到右 vs.从右到左
是否区分大小写，是否使用空格分隔.

Unicode出现之前为了能够支持不同的语言，各种语言使用
不同的字符集和字符集编码，甚至同一种语言都存在多种字
符集和字符集编码（仅中文就有 GBK、BIG5等）要支持多
种语言，就必须同时处理多种字符集编码

陈宇飞 Email: cyfdecyf@gmail.com Internationalization

Introduction
The solution to i18n

l10n using gettext
Background information

为什么国际化如此困难

计算机发展的初期没有考虑过这个问题，仅仅提供了英语的
支持，一个字节最多只能表示 256个字符
全世界许多的书写系统，而不同书写系统规则差异很大

字母 vs.表意文字
从左到右 vs.从右到左
是否区分大小写，是否使用空格分隔.

Unicode出现之前为了能够支持不同的语言，各种语言使用
不同的字符集和字符集编码，甚至同一种语言都存在多种字
符集和字符集编码（仅中文就有 GBK、BIG5等）要支持多
种语言，就必须同时处理多种字符集编码

陈宇飞 Email: cyfdecyf@gmail.com Internationalization

Introduction
The solution to i18n

l10n using gettext
Background information

为什么国际化如此困难

计算机发展的初期没有考虑过这个问题，仅仅提供了英语的
支持，一个字节最多只能表示 256个字符
全世界许多的书写系统，而不同书写系统规则差异很大

字母 vs.表意文字
从左到右 vs.从右到左
是否区分大小写，是否使用空格分隔.

Unicode出现之前为了能够支持不同的语言，各种语言使用
不同的字符集和字符集编码，甚至同一种语言都存在多种字
符集和字符集编码（仅中文就有 GBK、BIG5等）要支持多
种语言，就必须同时处理多种字符集编码

陈宇飞 Email: cyfdecyf@gmail.com Internationalization

Introduction
The solution to i18n

l10n using gettext

Standard C and POSIX’s solution
Unicode

OUTLINE

1 INTRODUCTION
Background information

2 THE SOLUTION TO I18N
Standard C and POSIX’s solution
Unicode

Introduction to Unicode
UTF-8 and UTF-16
Make your program support Unicode

3 L10N USING GETTEXT
Overview of getext
How to use gettext
Other libraries or tools for l10n

陈宇飞 Email: cyfdecyf@gmail.com Internationalization

Introduction
The solution to i18n

l10n using gettext

Standard C and POSIX’s solution
Unicode

OUTLINE

1 INTRODUCTION
Background information

2 THE SOLUTION TO I18N
Standard C and POSIX’s solution
Unicode

Introduction to Unicode
UTF-8 and UTF-16
Make your program support Unicode

3 L10N USING GETTEXT
Overview of getext
How to use gettext
Other libraries or tools for l10n

陈宇飞 Email: cyfdecyf@gmail.com Internationalization

Introduction
The solution to i18n

l10n using gettext

Standard C and POSIX’s solution
Unicode

MAKE YOUR PROGRAM LOCALE AWARE

通过调用 setlocale()设置 locale，以使 C库函数能
够 locale aware.如果不调用则使用默认的 locale – C
locale信息决定了许多 C库函数的行为
eg. strftime() (ctime() is not local aware!)

strfmon() (格式化钱币数值)
locale分为许多类别，每个类别分别决定不同的函数的行为
eg. strftime() – LC_TIME

strcoll() – LC_COLLATE

陈宇飞 Email: cyfdecyf@gmail.com Internationalization

Introduction
The solution to i18n

l10n using gettext

Standard C and POSIX’s solution
Unicode

MAKE YOUR PROGRAM LOCALE AWARE

通过调用 setlocale()设置 locale，以使 C库函数能
够 locale aware.如果不调用则使用默认的 locale – C
locale信息决定了许多 C库函数的行为
eg. strftime() (ctime() is not local aware!)

strfmon() (格式化钱币数值)
locale分为许多类别，每个类别分别决定不同的函数的行为
eg. strftime() – LC_TIME

strcoll() – LC_COLLATE

陈宇飞 Email: cyfdecyf@gmail.com Internationalization

Introduction
The solution to i18n

l10n using gettext

Standard C and POSIX’s solution
Unicode

MAKE YOUR PROGRAM LOCALE AWARE

通过调用 setlocale()设置 locale，以使 C库函数能
够 locale aware.如果不调用则使用默认的 locale – C
locale信息决定了许多 C库函数的行为
eg. strftime() (ctime() is not local aware!)

strfmon() (格式化钱币数值)
locale分为许多类别，每个类别分别决定不同的函数的行为
eg. strftime() – LC_TIME

strcoll() – LC_COLLATE

陈宇飞 Email: cyfdecyf@gmail.com Internationalization

Introduction
The solution to i18n

l10n using gettext

Standard C and POSIX’s solution
Unicode

C LIBRARY AND WCHAR_T

C99引入了 wchar_t来处理多字节字符集，wchar_t占
多少个 bit由具体实现而决定
（gcc中为 32-bit，且直接保存 Unicode字符集中定义的整
数值）

wchar.h中定义了一组类似于 ctype.h中的函数用于处
理 wchar_t
eg. wcslen() - strlen()

wprintf() - printf()

另外有一组用于多字节编码字节流和 wchar_t字符串之间
进行转换的函数，这些函数的行为也取决于 locale的设置
eg. mbstowcs() (convert wchar_t)

wcstombs (convert to multi-byte string)

陈宇飞 Email: cyfdecyf@gmail.com Internationalization

Introduction
The solution to i18n

l10n using gettext

Standard C and POSIX’s solution
Unicode

C LIBRARY AND WCHAR_T

C99引入了 wchar_t来处理多字节字符集，wchar_t占
多少个 bit由具体实现而决定
（gcc中为 32-bit，且直接保存 Unicode字符集中定义的整
数值）

wchar.h中定义了一组类似于 ctype.h中的函数用于处
理 wchar_t
eg. wcslen() - strlen()

wprintf() - printf()

另外有一组用于多字节编码字节流和 wchar_t字符串之间
进行转换的函数，这些函数的行为也取决于 locale的设置
eg. mbstowcs() (convert wchar_t)

wcstombs (convert to multi-byte string)

陈宇飞 Email: cyfdecyf@gmail.com Internationalization

Introduction
The solution to i18n

l10n using gettext

Standard C and POSIX’s solution
Unicode

C LIBRARY AND WCHAR_T

C99引入了 wchar_t来处理多字节字符集，wchar_t占
多少个 bit由具体实现而决定
（gcc中为 32-bit，且直接保存 Unicode字符集中定义的整
数值）

wchar.h中定义了一组类似于 ctype.h中的函数用于处
理 wchar_t
eg. wcslen() - strlen()

wprintf() - printf()

另外有一组用于多字节编码字节流和 wchar_t字符串之间
进行转换的函数，这些函数的行为也取决于 locale的设置
eg. mbstowcs() (convert wchar_t)

wcstombs (convert to multi-byte string)

陈宇飞 Email: cyfdecyf@gmail.com Internationalization

Introduction
The solution to i18n

l10n using gettext

Standard C and POSIX’s solution
Unicode

PRONS AND CONS ABOUT THIS APPROACH

prons
Provides a portable way to handle different character sets
and encodings.
The user can use different character sets and the
programmer don’t need to care about it.
Programmers don’t need to write code to handle character
sets and encodings directly.

cons
The library function needs to handle so many character
sets, it may not be very efficient.
wchar_t requires more memory.
Because the above reason, it should not be used to store
text on disk or transport on the net.
Hard to include characters used in different languages in
the same text file.

陈宇飞 Email: cyfdecyf@gmail.com Internationalization

Introduction
The solution to i18n

l10n using gettext

Standard C and POSIX’s solution
Unicode

PRONS AND CONS ABOUT THIS APPROACH

prons
Provides a portable way to handle different character sets
and encodings.
The user can use different character sets and the
programmer don’t need to care about it.
Programmers don’t need to write code to handle character
sets and encodings directly.

cons
The library function needs to handle so many character
sets, it may not be very efficient.
wchar_t requires more memory.
Because the above reason, it should not be used to store
text on disk or transport on the net.
Hard to include characters used in different languages in
the same text file.

陈宇飞 Email: cyfdecyf@gmail.com Internationalization

Introduction
The solution to i18n

l10n using gettext

Standard C and POSIX’s solution
Unicode

OUTLINE

1 INTRODUCTION
Background information

2 THE SOLUTION TO I18N
Standard C and POSIX’s solution
Unicode

Introduction to Unicode
UTF-8 and UTF-16
Make your program support Unicode

3 L10N USING GETTEXT
Overview of getext
How to use gettext
Other libraries or tools for l10n

陈宇飞 Email: cyfdecyf@gmail.com Internationalization

Introduction
The solution to i18n

l10n using gettext

Standard C and POSIX’s solution
Unicode

A LITTLE HISTORY ABOUT UNICODE

Unicode — unique, universal, and uniform character encoding
“Begin at 0 and add the next character ”

The concept of universal code is not new
Xerox Star use 16-bit character encoding in 1981, and
went on 27 languages including Chinese, Japanese.
The need of Unicode begans very early
The story of Mark Davis making up Apple KanjiTalk in 1985
The initial work was done by 3 engineers
Joe Becker(Xerox), Lee Collins(Xerox), Mark Davis(Apple).
This was in 1987.

陈宇飞 Email: cyfdecyf@gmail.com Internationalization

Introduction
The solution to i18n

l10n using gettext

Standard C and POSIX’s solution
Unicode

A LITTLE HISTORY ABOUT UNICODE

Unicode — unique, universal, and uniform character encoding
“Begin at 0 and add the next character ”

The concept of universal code is not new
Xerox Star use 16-bit character encoding in 1981, and
went on 27 languages including Chinese, Japanese.
The need of Unicode begans very early
The story of Mark Davis making up Apple KanjiTalk in 1985
The initial work was done by 3 engineers
Joe Becker(Xerox), Lee Collins(Xerox), Mark Davis(Apple).
This was in 1987.

陈宇飞 Email: cyfdecyf@gmail.com Internationalization

Introduction
The solution to i18n

l10n using gettext

Standard C and POSIX’s solution
Unicode

A LITTLE HISTORY ABOUT UNICODE

Unicode — unique, universal, and uniform character encoding
“Begin at 0 and add the next character ”

The concept of universal code is not new
Xerox Star use 16-bit character encoding in 1981, and
went on 27 languages including Chinese, Japanese.
The need of Unicode begans very early
The story of Mark Davis making up Apple KanjiTalk in 1985
The initial work was done by 3 engineers
Joe Becker(Xerox), Lee Collins(Xerox), Mark Davis(Apple).
This was in 1987.

陈宇飞 Email: cyfdecyf@gmail.com Internationalization

Introduction
The solution to i18n

l10n using gettext

Standard C and POSIX’s solution
Unicode

A LITTLE HISTORY ABOUT UNICODE

The latest version of Unicode is 5.0.0
The beginning of Unicode: Unicode 88
Unifying CJK
In 1988, discussion for the criteria for Han unification
began at the Research Libraryies Group at Palo Alto.
In 1991, the ISO Working Group responsible for ISO/IEC
10646 and the Unicode Consortium decided to create one
universal standard for coding multilingual text.
Later, major OSes began to support Unicode and more
and more programmers began to use Unicode in their
programs.

陈宇飞 Email: cyfdecyf@gmail.com Internationalization

Introduction
The solution to i18n

l10n using gettext

Standard C and POSIX’s solution
Unicode

A LITTLE HISTORY ABOUT UNICODE

The latest version of Unicode is 5.0.0
The beginning of Unicode: Unicode 88
Unifying CJK
In 1988, discussion for the criteria for Han unification
began at the Research Libraryies Group at Palo Alto.
In 1991, the ISO Working Group responsible for ISO/IEC
10646 and the Unicode Consortium decided to create one
universal standard for coding multilingual text.
Later, major OSes began to support Unicode and more
and more programmers began to use Unicode in their
programs.

陈宇飞 Email: cyfdecyf@gmail.com Internationalization

Introduction
The solution to i18n

l10n using gettext

Standard C and POSIX’s solution
Unicode

A LITTLE HISTORY ABOUT UNICODE

The latest version of Unicode is 5.0.0
The beginning of Unicode: Unicode 88
Unifying CJK
In 1988, discussion for the criteria for Han unification
began at the Research Libraryies Group at Palo Alto.
In 1991, the ISO Working Group responsible for ISO/IEC
10646 and the Unicode Consortium decided to create one
universal standard for coding multilingual text.
Later, major OSes began to support Unicode and more
and more programmers began to use Unicode in their
programs.

陈宇飞 Email: cyfdecyf@gmail.com Internationalization

Introduction
The solution to i18n

l10n using gettext

Standard C and POSIX’s solution
Unicode

A LITTLE HISTORY ABOUT UNICODE

The latest version of Unicode is 5.0.0
The beginning of Unicode: Unicode 88
Unifying CJK
In 1988, discussion for the criteria for Han unification
began at the Research Libraryies Group at Palo Alto.
In 1991, the ISO Working Group responsible for ISO/IEC
10646 and the Unicode Consortium decided to create one
universal standard for coding multilingual text.
Later, major OSes began to support Unicode and more
and more programmers began to use Unicode in their
programs.

陈宇飞 Email: cyfdecyf@gmail.com Internationalization

Introduction
The solution to i18n

l10n using gettext

Standard C and POSIX’s solution
Unicode

TECHNICAL DETAILS ON UNICODE

Unicode vs. ISO10646
ISO10646只定义了整数到字符的映射，定义了 2种编
码 UCS-2 和 UCS-4，该映射关系将和 Unicode保持统一
Unicode定义了其他更加易于使用的编码，提供了如何正确
显示字符的规则和信息

A significant advantage of Unicode
Unicode’s encoding doesn’t use shift states, so a loss of
data in the middle does not corrupt the subsequent
encoded data.
A common pitfall — Unicode is 16-bit?

It’s true in the early days of Unicode
But Unicode has now defined more than 100,000
characters
Apparently, it can’t fit into an 16-bit integer

陈宇飞 Email: cyfdecyf@gmail.com Internationalization

Introduction
The solution to i18n

l10n using gettext

Standard C and POSIX’s solution
Unicode

TECHNICAL DETAILS ON UNICODE

Unicode vs. ISO10646
ISO10646只定义了整数到字符的映射，定义了 2种编
码 UCS-2 和 UCS-4，该映射关系将和 Unicode保持统一
Unicode定义了其他更加易于使用的编码，提供了如何正确
显示字符的规则和信息

A significant advantage of Unicode
Unicode’s encoding doesn’t use shift states, so a loss of
data in the middle does not corrupt the subsequent
encoded data.
A common pitfall — Unicode is 16-bit?

It’s true in the early days of Unicode
But Unicode has now defined more than 100,000
characters
Apparently, it can’t fit into an 16-bit integer

陈宇飞 Email: cyfdecyf@gmail.com Internationalization

Introduction
The solution to i18n

l10n using gettext

Standard C and POSIX’s solution
Unicode

TECHNICAL DETAILS ON UNICODE

Unicode vs. ISO10646
ISO10646只定义了整数到字符的映射，定义了 2种编
码 UCS-2 和 UCS-4，该映射关系将和 Unicode保持统一
Unicode定义了其他更加易于使用的编码，提供了如何正确
显示字符的规则和信息

A significant advantage of Unicode
Unicode’s encoding doesn’t use shift states, so a loss of
data in the middle does not corrupt the subsequent
encoded data.
A common pitfall — Unicode is 16-bit?

It’s true in the early days of Unicode
But Unicode has now defined more than 100,000
characters
Apparently, it can’t fit into an 16-bit integer

陈宇飞 Email: cyfdecyf@gmail.com Internationalization

Introduction
The solution to i18n

l10n using gettext

Standard C and POSIX’s solution
Unicode

THE DIVISION UNICODE

The whole Unicode character set is divided into 17 planes.
Each plane has 216 characters
Basic Multilingual Plane (BMP)
Plane 0 covers all the characters that can be used by
programmers before Unicode. The coverage of character
is done from west to east.
Astral planes
Plane 1 through 16 contains characters that are not offen
used. eg. Musical symbol, acient Greek
It’s unlikely you will need to handle characters outside BMP
in the near term, but its unwise to make such assumption.

陈宇飞 Email: cyfdecyf@gmail.com Internationalization

Introduction
The solution to i18n

l10n using gettext

Standard C and POSIX’s solution
Unicode

THE DIVISION UNICODE

The whole Unicode character set is divided into 17 planes.
Each plane has 216 characters
Basic Multilingual Plane (BMP)
Plane 0 covers all the characters that can be used by
programmers before Unicode. The coverage of character
is done from west to east.
Astral planes
Plane 1 through 16 contains characters that are not offen
used. eg. Musical symbol, acient Greek
It’s unlikely you will need to handle characters outside BMP
in the near term, but its unwise to make such assumption.

陈宇飞 Email: cyfdecyf@gmail.com Internationalization

Introduction
The solution to i18n

l10n using gettext

Standard C and POSIX’s solution
Unicode

THE DIVISION UNICODE

The whole Unicode character set is divided into 17 planes.
Each plane has 216 characters
Basic Multilingual Plane (BMP)
Plane 0 covers all the characters that can be used by
programmers before Unicode. The coverage of character
is done from west to east.
Astral planes
Plane 1 through 16 contains characters that are not offen
used. eg. Musical symbol, acient Greek
It’s unlikely you will need to handle characters outside BMP
in the near term, but its unwise to make such assumption.

陈宇飞 Email: cyfdecyf@gmail.com Internationalization

Introduction
The solution to i18n

l10n using gettext

Standard C and POSIX’s solution
Unicode

THE DIVISION UNICODE

The whole Unicode character set is divided into 17 planes.
Each plane has 216 characters
Basic Multilingual Plane (BMP)
Plane 0 covers all the characters that can be used by
programmers before Unicode. The coverage of character
is done from west to east.
Astral planes
Plane 1 through 16 contains characters that are not offen
used. eg. Musical symbol, acient Greek
It’s unlikely you will need to handle characters outside BMP
in the near term, but its unwise to make such assumption.

陈宇飞 Email: cyfdecyf@gmail.com Internationalization

Introduction
The solution to i18n

l10n using gettext

Standard C and POSIX’s solution
Unicode

ABOUT CANONICAL FORM

A character in Unicode may have more than one
representation.
There are such kind of things called combining character
sequence which is a base character followed by any
number of combining characters.
Different combination can represent the same thing, only
one form of them is called canonical form. (For more
details, refer to Unicode FAQ)

陈宇飞 Email: cyfdecyf@gmail.com Internationalization

Introduction
The solution to i18n

l10n using gettext

Standard C and POSIX’s solution
Unicode

ABOUT CANONICAL FORM

A character in Unicode may have more than one
representation.
There are such kind of things called combining character
sequence which is a base character followed by any
number of combining characters.
Different combination can represent the same thing, only
one form of them is called canonical form. (For more
details, refer to Unicode FAQ)

陈宇飞 Email: cyfdecyf@gmail.com Internationalization

Introduction
The solution to i18n

l10n using gettext

Standard C and POSIX’s solution
Unicode

ABOUT CANONICAL FORM

A character in Unicode may have more than one
representation.
There are such kind of things called combining character
sequence which is a base character followed by any
number of combining characters.
Different combination can represent the same thing, only
one form of them is called canonical form. (For more
details, refer to Unicode FAQ)

陈宇飞 Email: cyfdecyf@gmail.com Internationalization

Introduction
The solution to i18n

l10n using gettext

Standard C and POSIX’s solution
Unicode

VARIOUS ENCODINGS FOR UNICODE

UTF stands for UCS Transformation Format, where UCS
stands for Universal (Multi-Octet Coded) Character Set.

UTF-1 (Not used), UTF-7 (For SMTP)
UTF-8 (defined in RFC2279)
UTF-16 (vs. UCS-2, defined in RFC2781)
UTF-32 (vs. UCS-4)
UTF-9, UTF-18 (Defined in RFC4042, they are new)

The most widely used encodings now are UTF-8 and UTF-16.

陈宇飞 Email: cyfdecyf@gmail.com Internationalization

Introduction
The solution to i18n

l10n using gettext

Standard C and POSIX’s solution
Unicode

OVERVIEW OF UTF-16 ENCODING

UTF-16 encoding is aimed to encode all the characters in BMP
in exacly two octets, and encode all the other characters in the
next 16 planes in exactly four octets.
The encoding rules:

Characters with values less than 0x10000 (Those in BMP)
are represented as a 16-bit integer with a value the same
with the character number. (less than 216 characters can
be encoded)

陈宇飞 Email: cyfdecyf@gmail.com Internationalization

Introduction
The solution to i18n

l10n using gettext

Standard C and POSIX’s solution
Unicode

OVERVIEW OF UTF-16 ENCODING

UTF-16 encoding is aimed to encode all the characters in BMP
in exacly two octets, and encode all the other characters in the
next 16 planes in exactly four octets.
The encoding rules:

Characters with values less than 0x10000 (Those in BMP)
are represented as a 16-bit integer with a value the same
with the character number. (less than 216 characters can
be encoded)

陈宇飞 Email: cyfdecyf@gmail.com Internationalization

Introduction
The solution to i18n

l10n using gettext

Standard C and POSIX’s solution
Unicode

UTF-16 ENCODING RULES CONT’

Characters with values between 0x10000 and 0x10FFFF
are represented with two 16-bit integers.

High-half one’s value is between 0xD800 and 0xDBFF.
Low-half one’s between 0xDC00 and 0xDFFF.

These two blocks are reserved in BMP for use by UTF-16
and are called high and low surrogate area respectively.
(220 characters can be encoded)
Characters with values greater than 0x10FFFF cannot be
encoded in UTF-16. (So UTF-16 can only encode a total of
17× 216 − 211 characters.)

陈宇飞 Email: cyfdecyf@gmail.com Internationalization

Introduction
The solution to i18n

l10n using gettext

Standard C and POSIX’s solution
Unicode

UTF-16 ENCODING RULES CONT’

Characters with values between 0x10000 and 0x10FFFF
are represented with two 16-bit integers.

High-half one’s value is between 0xD800 and 0xDBFF.
Low-half one’s between 0xDC00 and 0xDFFF.

These two blocks are reserved in BMP for use by UTF-16
and are called high and low surrogate area respectively.
(220 characters can be encoded)
Characters with values greater than 0x10FFFF cannot be
encoded in UTF-16. (So UTF-16 can only encode a total of
17× 216 − 211 characters.)

陈宇飞 Email: cyfdecyf@gmail.com Internationalization

Introduction
The solution to i18n

l10n using gettext

Standard C and POSIX’s solution
Unicode

THE ENCODING PROCESS

Encoding characters with value less than 0x10000 is trivial.
For characters larger than 0x10000, denote one as U, the
encoding process is as follows

1 U ′ = U − 0x10000 = yyyyyyyyyy xxxxxxxxxx

2 W1 = 110110 0000000000
W2 = 110111 0000000000

3 W1 = 110110 yyyyyyyyyy
W2 = 110111 xxxxxxxxxx

陈宇飞 Email: cyfdecyf@gmail.com Internationalization

Introduction
The solution to i18n

l10n using gettext

Standard C and POSIX’s solution
Unicode

THE ENCODING PROCESS

Encoding characters with value less than 0x10000 is trivial.
For characters larger than 0x10000, denote one as U, the
encoding process is as follows

1 U ′ = U − 0x10000 = yyyyyyyyyy xxxxxxxxxx

2 W1 = 110110 0000000000
W2 = 110111 0000000000

3 W1 = 110110 yyyyyyyyyy
W2 = 110111 xxxxxxxxxx

陈宇飞 Email: cyfdecyf@gmail.com Internationalization

Introduction
The solution to i18n

l10n using gettext

Standard C and POSIX’s solution
Unicode

THE ENCODING PROCESS

Encoding characters with value less than 0x10000 is trivial.
For characters larger than 0x10000, denote one as U, the
encoding process is as follows

1 U ′ = U − 0x10000 = yyyyyyyyyy xxxxxxxxxx

2 W1 = 110110 0000000000
W2 = 110111 0000000000

3 W1 = 110110 yyyyyyyyyy
W2 = 110111 xxxxxxxxxx

陈宇飞 Email: cyfdecyf@gmail.com Internationalization

Introduction
The solution to i18n

l10n using gettext

Standard C and POSIX’s solution
Unicode

THE ENCODING PROCESS

Encoding characters with value less than 0x10000 is trivial.
For characters larger than 0x10000, denote one as U, the
encoding process is as follows

1 U ′ = U − 0x10000 = yyyyyyyyyy xxxxxxxxxx

2 W1 = 110110 0000000000
W2 = 110111 0000000000

3 W1 = 110110 yyyyyyyyyy
W2 = 110111 xxxxxxxxxx

陈宇飞 Email: cyfdecyf@gmail.com Internationalization

Introduction
The solution to i18n

l10n using gettext

Standard C and POSIX’s solution
Unicode

BIG-ENDIAN OR LITTLE-ENDIAN?

Since UTF-16 uses 2 bytes as an encoding unit, the
endian problem must be dealt with.
0xFFFE can not appear in Unicode while 0xFEFF
represents “ZERO WIDTH NON-BREAKING SPACE”. It is
prepended to a Unicode character stream as the Byte
Order Marker (BOM).

If you encount a two bytes sequence 0xFE 0xFF, the the
encoding is in big-endian.
If you encount 0xFF 0xFE, then the encoding is in
little-endian.

UTF-16BE and UTF-16LE are defined to label the UTF-16
encoded files whether they are encoded in big-endian or
little-endian.

陈宇飞 Email: cyfdecyf@gmail.com Internationalization

Introduction
The solution to i18n

l10n using gettext

Standard C and POSIX’s solution
Unicode

BIG-ENDIAN OR LITTLE-ENDIAN?

Since UTF-16 uses 2 bytes as an encoding unit, the
endian problem must be dealt with.
0xFFFE can not appear in Unicode while 0xFEFF
represents “ZERO WIDTH NON-BREAKING SPACE”. It is
prepended to a Unicode character stream as the Byte
Order Marker (BOM).

If you encount a two bytes sequence 0xFE 0xFF, the the
encoding is in big-endian.
If you encount 0xFF 0xFE, then the encoding is in
little-endian.

UTF-16BE and UTF-16LE are defined to label the UTF-16
encoded files whether they are encoded in big-endian or
little-endian.

陈宇飞 Email: cyfdecyf@gmail.com Internationalization

Introduction
The solution to i18n

l10n using gettext

Standard C and POSIX’s solution
Unicode

BIG-ENDIAN OR LITTLE-ENDIAN?

Since UTF-16 uses 2 bytes as an encoding unit, the
endian problem must be dealt with.
0xFFFE can not appear in Unicode while 0xFEFF
represents “ZERO WIDTH NON-BREAKING SPACE”. It is
prepended to a Unicode character stream as the Byte
Order Marker (BOM).

If you encount a two bytes sequence 0xFE 0xFF, the the
encoding is in big-endian.
If you encount 0xFF 0xFE, then the encoding is in
little-endian.

UTF-16BE and UTF-16LE are defined to label the UTF-16
encoded files whether they are encoded in big-endian or
little-endian.

陈宇飞 Email: cyfdecyf@gmail.com Internationalization

Introduction
The solution to i18n

l10n using gettext

Standard C and POSIX’s solution
Unicode

OVERVIEW OF UTF-8 ENCODING

UTF-8 was originally a project aimed to specify a File
System Safe UCS Transformation Format that is
compatible UNIX system. (Plan 9 is the first one to use
UTF-8 though it’s not UNIX.)
UTF-8 encodes UCS-2 or UCS-4 characters as a varying
number of octets. The number of octets range from 1 to 6.
Characteristics

UTF-8 encoded characters are just bytes stream.
7-bit US-ASCII characters has the same value defined in
Unicode as they were in the ASCII table.
US-ASCII values do not appear otherwise in UTF-8
encoded character stream.

陈宇飞 Email: cyfdecyf@gmail.com Internationalization

Introduction
The solution to i18n

l10n using gettext

Standard C and POSIX’s solution
Unicode

OVERVIEW OF UTF-8 ENCODING

UTF-8 was originally a project aimed to specify a File
System Safe UCS Transformation Format that is
compatible UNIX system. (Plan 9 is the first one to use
UTF-8 though it’s not UNIX.)
UTF-8 encodes UCS-2 or UCS-4 characters as a varying
number of octets. The number of octets range from 1 to 6.
Characteristics

UTF-8 encoded characters are just bytes stream.
7-bit US-ASCII characters has the same value defined in
Unicode as they were in the ASCII table.
US-ASCII values do not appear otherwise in UTF-8
encoded character stream.

陈宇飞 Email: cyfdecyf@gmail.com Internationalization

Introduction
The solution to i18n

l10n using gettext

Standard C and POSIX’s solution
Unicode

OVERVIEW OF UTF-8 ENCODING

UTF-8 was originally a project aimed to specify a File
System Safe UCS Transformation Format that is
compatible UNIX system. (Plan 9 is the first one to use
UTF-8 though it’s not UNIX.)
UTF-8 encodes UCS-2 or UCS-4 characters as a varying
number of octets. The number of octets range from 1 to 6.
Characteristics

UTF-8 encoded characters are just bytes stream.
7-bit US-ASCII characters has the same value defined in
Unicode as they were in the ASCII table.
US-ASCII values do not appear otherwise in UTF-8
encoded character stream.

陈宇飞 Email: cyfdecyf@gmail.com Internationalization

Introduction
The solution to i18n

l10n using gettext

Standard C and POSIX’s solution
Unicode

HOW UTF-8 ENCODING IS DONE

Besides ASCII values, the first byte indicates how many bytes
the character takes, the left bytes start with 10.

UCS-4 range (hex.) UTF-8 octet sequence (bin.)

0000 0000–0000 007F 0xxxxxxx
0000 0080–0000 07FF 110xxxxx 10xxxxxx
0000 0800–0000 FFFF 1110xxxx 10xxxxxx 10xxxxxx

0001 0000–001F FFFF 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
0020 0000–03FF FFFF 111110xx
0400 0000–7FFF FFFF 1111110x

陈宇飞 Email: cyfdecyf@gmail.com Internationalization

Introduction
The solution to i18n

l10n using gettext

Standard C and POSIX’s solution
Unicode

SOME NOTES ON UTF-8 ENCODING

When converting from UTF-16 to UTF-8 , values between
D800 – DFFF should be special treated. The UTF-16
encoding should be first undone.
FF and FE will not appear in UTF-8 encoding.
Security Considerations. Must handle invalid byte stream.
IIS once has secure problem with UTF-8 encoded byte
streams.

陈宇飞 Email: cyfdecyf@gmail.com Internationalization

Introduction
The solution to i18n

l10n using gettext

Standard C and POSIX’s solution
Unicode

CHOOSE AN INTERNAL ENCODING – UTF-16

UTF-16
pros

Java, C# use UTF-16 as it’s internal encoding.
Effecient dealing with Asian characters.
When you are writing new application and is using Java or
C#, you should consider use UTF-16.

cons
Uncompatible with already existing C libraries.
When converting old programs to use Unicode, lots of
change are needed.

陈宇飞 Email: cyfdecyf@gmail.com Internationalization

Introduction
The solution to i18n

l10n using gettext

Standard C and POSIX’s solution
Unicode

CHOOSE AN INTERNAL ENCODING – UTF-16

UTF-16
pros

Java, C# use UTF-16 as it’s internal encoding.
Effecient dealing with Asian characters.
When you are writing new application and is using Java or
C#, you should consider use UTF-16.

cons
Uncompatible with already existing C libraries.
When converting old programs to use Unicode, lots of
change are needed.

陈宇飞 Email: cyfdecyf@gmail.com Internationalization

Introduction
The solution to i18n

l10n using gettext

Standard C and POSIX’s solution
Unicode

CHOOSE AN INTERNAL ENCODING – UTF-8

UTF-8
pros

C programs appreciate UTF-8 since there are no portable
way to define an 16-bit integer in C.
Compatible with UNIX system’s most library.
When you are modifying old programs to support unicode,
using UTF-8 only need small changes. Some even need no
change. (eg. cat, echo)

cons
When dealing lots of Asian character, it’s not so effecient.
To locate a specific character in the bytes stream, you need
to iterate from the start of the stream. (UTF-16 also have
the problem, less serious.)

陈宇飞 Email: cyfdecyf@gmail.com Internationalization

Introduction
The solution to i18n

l10n using gettext

Standard C and POSIX’s solution
Unicode

CHOOSE AN INTERNAL ENCODING – UTF-8

UTF-8
pros

C programs appreciate UTF-8 since there are no portable
way to define an 16-bit integer in C.
Compatible with UNIX system’s most library.
When you are modifying old programs to support unicode,
using UTF-8 only need small changes. Some even need no
change. (eg. cat, echo)

cons
When dealing lots of Asian character, it’s not so effecient.
To locate a specific character in the bytes stream, you need
to iterate from the start of the stream. (UTF-16 also have
the problem, less serious.)

陈宇飞 Email: cyfdecyf@gmail.com Internationalization

Introduction
The solution to i18n

l10n using gettext

Standard C and POSIX’s solution
Unicode

OTHER CONSIDERATION

What encoding does your library support
eg. The ncurses library.
Convert external encoding into internal encoding

User’s input, files etc. may not be encoded as the same
with your internal encoding.
iconv() can convert the byte streams between various
encodings.

User input is not one byte a time now! It’s multi-byte a time.
Do you need to treat wide characters specially?
eg. In ncurses library, wide characters take two cursor
positions.

陈宇飞 Email: cyfdecyf@gmail.com Internationalization

Introduction
The solution to i18n

l10n using gettext

Standard C and POSIX’s solution
Unicode

OTHER CONSIDERATION

What encoding does your library support
eg. The ncurses library.
Convert external encoding into internal encoding

User’s input, files etc. may not be encoded as the same
with your internal encoding.
iconv() can convert the byte streams between various
encodings.

User input is not one byte a time now! It’s multi-byte a time.
Do you need to treat wide characters specially?
eg. In ncurses library, wide characters take two cursor
positions.

陈宇飞 Email: cyfdecyf@gmail.com Internationalization

Introduction
The solution to i18n

l10n using gettext

Standard C and POSIX’s solution
Unicode

OTHER CONSIDERATION

What encoding does your library support
eg. The ncurses library.
Convert external encoding into internal encoding

User’s input, files etc. may not be encoded as the same
with your internal encoding.
iconv() can convert the byte streams between various
encodings.

User input is not one byte a time now! It’s multi-byte a time.
Do you need to treat wide characters specially?
eg. In ncurses library, wide characters take two cursor
positions.

陈宇飞 Email: cyfdecyf@gmail.com Internationalization

Introduction
The solution to i18n

l10n using gettext

Standard C and POSIX’s solution
Unicode

OTHER CONSIDERATION

What encoding does your library support
eg. The ncurses library.
Convert external encoding into internal encoding

User’s input, files etc. may not be encoded as the same
with your internal encoding.
iconv() can convert the byte streams between various
encodings.

User input is not one byte a time now! It’s multi-byte a time.
Do you need to treat wide characters specially?
eg. In ncurses library, wide characters take two cursor
positions.

陈宇飞 Email: cyfdecyf@gmail.com Internationalization

Introduction
The solution to i18n

l10n using gettext

Standard C and POSIX’s solution
Unicode

SOME LIBRARIES THAT CAN BE USED TO HANDLE

UNICODE

Glib

One of the fundamental libraries for the GNOME project,
provides various routines to deal with UTF-8, UTF-16
encoded characters.
Very handy if you are using C since it also provides many
useful data structure and other things.

ICU — International Components for Unicode

From IBM, now open sourced.
Supports C/C++, Java.
Powerful and feature rich. Has support for Unicode
bi-direction algorithm.

陈宇飞 Email: cyfdecyf@gmail.com Internationalization

Introduction
The solution to i18n

l10n using gettext

Standard C and POSIX’s solution
Unicode

SOME LIBRARIES THAT CAN BE USED TO HANDLE

UNICODE

Glib

One of the fundamental libraries for the GNOME project,
provides various routines to deal with UTF-8, UTF-16
encoded characters.
Very handy if you are using C since it also provides many
useful data structure and other things.

ICU — International Components for Unicode

From IBM, now open sourced.
Supports C/C++, Java.
Powerful and feature rich. Has support for Unicode
bi-direction algorithm.

陈宇飞 Email: cyfdecyf@gmail.com Internationalization

Introduction
The solution to i18n

l10n using gettext

Overview of getext
How to use gettext
Other libraries or tools for l10n

OUTLINE

1 INTRODUCTION
Background information

2 THE SOLUTION TO I18N
Standard C and POSIX’s solution
Unicode

Introduction to Unicode
UTF-8 and UTF-16
Make your program support Unicode

3 L10N USING GETTEXT
Overview of getext
How to use gettext
Other libraries or tools for l10n

陈宇飞 Email: cyfdecyf@gmail.com Internationalization

Introduction
The solution to i18n

l10n using gettext

Overview of getext
How to use gettext
Other libraries or tools for l10n

OUTLINE

1 INTRODUCTION
Background information

2 THE SOLUTION TO I18N
Standard C and POSIX’s solution
Unicode

Introduction to Unicode
UTF-8 and UTF-16
Make your program support Unicode

3 L10N USING GETTEXT
Overview of getext
How to use gettext
Other libraries or tools for l10n

陈宇飞 Email: cyfdecyf@gmail.com Internationalization

Introduction
The solution to i18n

l10n using gettext

Overview of getext
How to use gettext
Other libraries or tools for l10n

INTRODUCTION TO GETTEXT

Making your program support Unicode is just the i18n part.
The second part is l10n, provides locale specific infomation for
the program.

POSIX standardized catgets, but it’s hard to use.
gettext is the de facto standard in the GNU world, based
on a design originally done by Sun for Solaris.
gettext can translate program message into different
languages at runtime.

陈宇飞 Email: cyfdecyf@gmail.com Internationalization

Introduction
The solution to i18n

l10n using gettext

Overview of getext
How to use gettext
Other libraries or tools for l10n

TRASLATION MECHANISM AND FUNCTIONS

The translation mechanism is to use the string that appears in
the source code as the key, look up the translated message
from some file.

textdomain() is used to pick up the file which contains
the translated message for the application.
gettext() is responsible for looking up the the translated
message by the key. It’s used against literature strings in
the source code.

陈宇飞 Email: cyfdecyf@gmail.com Internationalization

Introduction
The solution to i18n

l10n using gettext

Overview of getext
How to use gettext
Other libraries or tools for l10n

TRASLATION MECHANISM AND FUNCTIONS

The translation mechanism is to use the string that appears in
the source code as the key, look up the translated message
from some file.

textdomain() is used to pick up the file which contains
the translated message for the application.
gettext() is responsible for looking up the the translated
message by the key. It’s used against literature strings in
the source code.

陈宇飞 Email: cyfdecyf@gmail.com Internationalization

Introduction
The solution to i18n

l10n using gettext

Overview of getext
How to use gettext
Other libraries or tools for l10n

OTHER FUNCTIONS AND TOOLS

bindtextdomain() is used to specify the directory in
which may contain the message file. The default directory
is in /usr/share/locale. Use this when you are testing and.
xgettext is used to extract all the string need to be
translated.
msgfmt is used to compile the translated message into
binary file that can be used by gettext().

陈宇飞 Email: cyfdecyf@gmail.com Internationalization

Introduction
The solution to i18n

l10n using gettext

Overview of getext
How to use gettext
Other libraries or tools for l10n

OTHER FUNCTIONS AND TOOLS

bindtextdomain() is used to specify the directory in
which may contain the message file. The default directory
is in /usr/share/locale. Use this when you are testing and.
xgettext is used to extract all the string need to be
translated.
msgfmt is used to compile the translated message into
binary file that can be used by gettext().

陈宇飞 Email: cyfdecyf@gmail.com Internationalization

Introduction
The solution to i18n

l10n using gettext

Overview of getext
How to use gettext
Other libraries or tools for l10n

OUTLINE

1 INTRODUCTION
Background information

2 THE SOLUTION TO I18N
Standard C and POSIX’s solution
Unicode

Introduction to Unicode
UTF-8 and UTF-16
Make your program support Unicode

3 L10N USING GETTEXT
Overview of getext
How to use gettext
Other libraries or tools for l10n

陈宇飞 Email: cyfdecyf@gmail.com Internationalization

Introduction
The solution to i18n

l10n using gettext

Overview of getext
How to use gettext
Other libraries or tools for l10n

STEPS USING GETTEXT

1 Adopt the gettext.h header file into your application. Add
the following definition to a header file included by all your
C source files.
#define ENABLE_NLS 1
#include "gettext.h"
#define _(msgid) gettext(msgid)
#define N_(msgid) msgid
The last two macros are just convention, but they also
make your life easier when you want to do the translation.

陈宇飞 Email: cyfdecyf@gmail.com Internationalization

Introduction
The solution to i18n

l10n using gettext

Overview of getext
How to use gettext
Other libraries or tools for l10n

STEPS USING GETTEXT CONT’

2 Call setlocale() as appropriate. The easiest is call
setlocale(LC_ALL, "").

3 Pick a text domain for the application and set it with
textdomain().

4 If testing, call bindtextdomain() and bind the text
domain to a particular directory.

5 Use strfmon(), strftime() and the ’ flag for
printf() as appropriate.

陈宇飞 Email: cyfdecyf@gmail.com Internationalization

Introduction
The solution to i18n

l10n using gettext

Overview of getext
How to use gettext
Other libraries or tools for l10n

STEPS USING GETTEXT CONT’

2 Call setlocale() as appropriate. The easiest is call
setlocale(LC_ALL, "").

3 Pick a text domain for the application and set it with
textdomain().

4 If testing, call bindtextdomain() and bind the text
domain to a particular directory.

5 Use strfmon(), strftime() and the ’ flag for
printf() as appropriate.

陈宇飞 Email: cyfdecyf@gmail.com Internationalization

Introduction
The solution to i18n

l10n using gettext

Overview of getext
How to use gettext
Other libraries or tools for l10n

STEPS USING GETTEXT CONT’

2 Call setlocale() as appropriate. The easiest is call
setlocale(LC_ALL, "").

3 Pick a text domain for the application and set it with
textdomain().

4 If testing, call bindtextdomain() and bind the text
domain to a particular directory.

5 Use strfmon(), strftime() and the ’ flag for
printf() as appropriate.

陈宇飞 Email: cyfdecyf@gmail.com Internationalization

Introduction
The solution to i18n

l10n using gettext

Overview of getext
How to use gettext
Other libraries or tools for l10n

STEPS USING GETTEXT CONT’

2 Call setlocale() as appropriate. The easiest is call
setlocale(LC_ALL, "").

3 Pick a text domain for the application and set it with
textdomain().

4 If testing, call bindtextdomain() and bind the text
domain to a particular directory.

5 Use strfmon(), strftime() and the ’ flag for
printf() as appropriate.

陈宇飞 Email: cyfdecyf@gmail.com Internationalization

Introduction
The solution to i18n

l10n using gettext

Overview of getext
How to use gettext
Other libraries or tools for l10n

STEPS USING GETTEXT CONT’

6 Mark all static literature strings use N_(), other literature
strings use _() (Of course, you only need to mark the
strings that need to be translated.)

7 Use xgettext to extract strings needs to be translated.
$ xgettext -k=_ -k=N_ \
> -default-domain=domainname *.c
You will get a file domainname.po.

陈宇飞 Email: cyfdecyf@gmail.com Internationalization

Introduction
The solution to i18n

l10n using gettext

Overview of getext
How to use gettext
Other libraries or tools for l10n

STEPS USING GETTEXT CONT’

6 Mark all static literature strings use N_(), other literature
strings use _() (Of course, you only need to mark the
strings that need to be translated.)

7 Use xgettext to extract strings needs to be translated.
$ xgettext -k=_ -k=N_ \
> -default-domain=domainname *.c
You will get a file domainname.po.

陈宇飞 Email: cyfdecyf@gmail.com Internationalization

Introduction
The solution to i18n

l10n using gettext

Overview of getext
How to use gettext
Other libraries or tools for l10n

STEPS USING GETTEXT CONT’

8 Make a copy of domainname.po, say foo.po and
translate all the messages in that file.

9 Use msgfmt to compile foo.po.
$ msgfmt foo.po -o domainname.mo
Then you can put it to the right place and test it or use it.
eg. Put it to /usr/share/locale/zh_CN/LC_MESSAGES if
your translation is for Chinese. If testing, put it at
./zh_CN/LC_MESSAGES.

陈宇飞 Email: cyfdecyf@gmail.com Internationalization

Introduction
The solution to i18n

l10n using gettext

Overview of getext
How to use gettext
Other libraries or tools for l10n

STEPS USING GETTEXT CONT’

8 Make a copy of domainname.po, say foo.po and
translate all the messages in that file.

9 Use msgfmt to compile foo.po.
$ msgfmt foo.po -o domainname.mo
Then you can put it to the right place and test it or use it.
eg. Put it to /usr/share/locale/zh_CN/LC_MESSAGES if
your translation is for Chinese. If testing, put it at
./zh_CN/LC_MESSAGES.

陈宇飞 Email: cyfdecyf@gmail.com Internationalization

Introduction
The solution to i18n

l10n using gettext

Overview of getext
How to use gettext
Other libraries or tools for l10n

OUTLINE

1 INTRODUCTION
Background information

2 THE SOLUTION TO I18N
Standard C and POSIX’s solution
Unicode

Introduction to Unicode
UTF-8 and UTF-16
Make your program support Unicode

3 L10N USING GETTEXT
Overview of getext
How to use gettext
Other libraries or tools for l10n

陈宇飞 Email: cyfdecyf@gmail.com Internationalization

Introduction
The solution to i18n

l10n using gettext

Overview of getext
How to use gettext
Other libraries or tools for l10n

OTHER LIBRARIES OR TOOLS FOR L10N

Each major user interface toolkit has itw own way to solve the
problem of l10n. gettext is for command line interface.

Qt
Mark all literature string using tr() and use Linguist to do
the translation.
Pango
It’s the core of text and font handling for GTK+-2.x.
ICU
It also provides methods for l10n.

陈宇飞 Email: cyfdecyf@gmail.com Internationalization

Introduction
The solution to i18n

l10n using gettext

Overview of getext
How to use gettext
Other libraries or tools for l10n

REFERENCES AND ONLINE RESOURCES

Arnold Robbins, Linux Programming by Example.

Unicode, Inc. Ten years of Unicode 1988 - 1998.

Tim Bray, On the goodness of Unicode.

Tim Bray, Characters vs. Bytes.

IETF RFC2279, UTF-8, a transformation format of ISO
10646

IETF RFC2781, UTF-16, an encoding of ISO 10646

陈宇飞 Email: cyfdecyf@gmail.com Internationalization

Introduction
The solution to i18n

l10n using gettext

Overview of getext
How to use gettext
Other libraries or tools for l10n

i18n your program from now on

Thanks for your time

陈宇飞 Email: cyfdecyf@gmail.com Internationalization

	Introduction
	Background information

	The solution to i18n
	Standard C and POSIX's solution
	Unicode

	l10n using gettext
	Overview of getext
	How to use gettext
	Other libraries or tools for l10n

