INTERNATIONALIZATION
THINGS ABOUT LOCALE, UNICODE, GETTEXT, ETC.

73S SN

Email: cyfdecyf@gmail.com
AU

2007 -3 H 25 H

=% Email: cyfdecyf@gmail.com Internationalization

WHAT I WILL TALK ABOUT

o locale IS EXT R G A H 45

=% Email: cyfdecyf@gmail.com Internationalization

WHAT I WILL TALK ABOUT

o locale IS EXT R G A H 45
o /EFEAEFEIFHHH locale 15 &

=% Email: cyfdecyf@gmail.com Internationalization

WHAT I WILL TALK ABOUT

o locale HIEH N RG A AN
o /ERELEREIF I locale {7 5
o 442 Unicode, &1 UTF-8, UTF-16 ‘&t 4% %

=% Email: cyfdecyf@gmail.com Internationalization

WHAT I WILL TALK ABOUT

o locale F¥EAZ X RS A H A5

o EFAERT T locale {7 &

o ff4+2 Unicode, B HI UTF-8, UTF-16 /24X
o JEREMIRAYFLFME A Unicode M i sz C

=% Email: cyfdecyf@gmail.com Internationalization

WHAT I WILL TALK ABOUT

locale PEE7R X} R G4 45200

ERERF T locale {7 B

f+4./2 Unicode, &Il UTF-8, UTF-16 24X &
JEREMVRAGTE T Unicode M Sz 435 3¢
BT EAR R BIE T IR F LR BE S E R

=% Email: cyfdecyf@gmail.com Internationalization

Introduction
Background information

OUTLINE

@ INTRODUCTION
@ Background information

cyfdecyf@gmail.com Internationalization

Introduction
Background information

OUTLINE

@ INTRODUCTION
@ Background information

cyfdecyf@gmail.com Internationalization

Introduction
Background information

THE CENTRAL CONCEPT ABOUT
INTERNATIONALIZATION

e locale — The place in which a program is run. It
encapsulates the following information:
e local character set
e how to format and display monetary amounts
e how to format numeric values

e —I Jocale fH: C, en_US, zh_CN, zh_CN.GBK

=% Email: cyfdecyf@gmail.com Internationalization

Introduction
Background information

OTHERS TERMS ABOUT INTERNATIONALIZATION

e Internationalization (i18n)
The process of writing (or modifying) a program so that it
can function in multiple locales.

=% Email: cyfdecyf@gmail.com Internationalization

Introduction
Background information

OTHERS TERMS ABOUT INTERNATIONALIZATION

e Internationalization (i18n)
The process of writing (or modifying) a program so that it
can function in multiple locales.

e Localization (I110n)
The process of tailoring an i18n program for a specific
locale.

=% Email: cyfdecyf@gmail.com Internationalization

Introduction
Background information

OTHERS TERMS ABOUT INTERNATIONALIZATION

e Internationalization (i18n)
The process of writing (or modifying) a program so that it
can function in multiple locales.

e Localization (I110n)
The process of tailoring an i18n program for a specific
locale.

e Globalization (g11n)
Prepare all possible localizations for an i18n program.
Make it for global use.

=% Email: cyfdecyf@gmail.com Internationalization

Introduction
Background information

KT AL =D EA R

o Character Set — #4574
EERE LY o]S
MR AR E LR — At 8 bit ryRed, W
FFEWFR N Multibyte Character Set

=% Email: cyfdecyf@gmail.com Internationalization

Introduction
Background information

FAFERI = HA &

e Character Set — Ff4
TR R 2] B S
WIRSAFFEE 8 SUP R4 T 8 bit fy%e%k,
TFAFEMFR N Multibyte Character Set

e Character set encoding — 474 4w hid
VPTG T B 5 2 AR AT AL s
iﬂ: ?ﬁé% HRRE A TAR S Y B AR A T R A AR AL
FAHF

=% Email: cyfdecyf@gmail.com Internationalization

Introduction
Background information

KT AL =D EA R

o Character Set — #4574
EERE LY o]S
MR AR E LR — At 8 bit ryRed, W
FFEWFR N Multibyte Character Set
e Character set encoding — 474 4w hid
W AR AR B B AT A AL 3R
X FAFAE A BUE A TR B) B Wk T S A A A RN A i
FAF
e Language
TE SCTAFEE e 44 1 (o A 0]
B FRXNM RSB/ NGB, FAFRINT A

=% Email: cyfdecyf@gmail.com Internationalization

Introduction
Background information

AT 2 FE B A Ut DRI X

o ML RAIWIMIBA B IS X AR, AUPERAE Ty
SR, — T RE RN 256 DTAT

=% Email: cyfdecyf@gmail.com Internationalization

Introduction
Background information

AT 2 FE B A Ut DRI X

o TTAMNLARAWIHIEA % it XA @, AL T 5EiE)
TR, =TT RE HEERIR 256 NTAT
o &L BE RS, MIAFRBE RGN 2EFEK
o Fhfvs. TR IF
o MWZE3A vs. WA R/
o ERXN KNG, BAEMHSHM......

=% Email: cyfdecyf@gmail.com Internationalization

Introduction
Background information

AT 2 FE B A Ut DRI X

o THAMNLARIIWIIHEA % X AN, UL T eiEny
THE, — T RE HEERR 256 AT

o £MFFZHNE RS, MARPERFEHN2ZFIREK

o Fhlvs. FEILF
o MZEFA vs. WA EIAE
o BHRXANK/NING, BEHMHHEWIE.

e Unicode HBLZ RN T HEMS SCHEARIIE S, &MiE S
AR B FAFEM AR, R R —FE S E L Fh T
TFEMTFAFEmMS (P SGA GBK, BIGS %5) B XL
FET, WL [R] I B 22 R A5 S Yt

=% Email: cyfdecyf@gmail.com Internationalization

The solution to i18n Stalndard C and POSIX’s solution
Unicode

OUTLINE

© THE SOLUTION TO 118N
e Standard C and POSIX’s solution
e Unicode

@ Introduction to Unicode
@ UTF-8 and UTF-16

@ Make your program support Unicode

=% Email: cyfdecyf@gmail.com

Internationalization

Standard C and POSIX’s solution

The solution to i18n Unicode

OUTLINE

© THE SOLUTION TO 118N
e Standard C and POSIX’s solution

=% Email: cyfdecyf@gmail.com Internationalization

Standard C and POSIX’s solution

The solution to i18n Unicode

MAKE YOUR PROGRAM LOCALE AWARE

o HI I setlocale () X locale, DU C JEpR%NHE
% locale aware. IS AT I T BRIA K locale — C

=% Email: cyfdecyf@gmail.com Internationalization

Standard C and POSIX’s solution

The solution to i18n Unicode

MAKE YOUR PROGRAM LOCALE AWARE

o T setlocale () X H locale, LI C JEpR%LHE
% locale aware. USRS H W FH#RIARY locale — C

e locale g B ULE THFZL C JEREIITT>
eg. strftime () (ctime () is not local aware!)

strfmon () (#&=ALER ()

=% Email: cyfdecyf@gmail.com Internationalization

Standard C and POSIX’s solution

The solution to i18n Unicode

MAKE YOUR PROGRAM LOCALE AWARE

o T setlocale () X H locale, LI C JEpR%LHE
% locale aware. USRS H W FH#RIARY locale — C
e locale {5 B T 4% C FERRELITT>
eg. strftime () (ctime () is not local aware!)
strfmon () (#&=ALER ()
e locale 73 ML 25, AR o AP AN R) R TR
eg. strftime () —LC_TIME
strcoll () —LC_COLLATE

=% Email: cyfdecyf@gmail.com Internationalization

Standard C and POSIX’s solution

The solution to i18n Unicode

C LIBRARY AND WCHAR_T

o C99 5| AT wchar_t RAHEZFI F/HEE, wechar_t &
2/ bit HARSZE P E
(gec Hh 32-bit, H E#RAF Unicode TFA748EH e LAY 3%
BUE)

=% Email: cyfdecyf@gmail.com Internationalization

Standard C and POSIX’s solution

The solution to i18n Unicode

C LIBRARY AND WCHAR_T

o C99 5| AT wchar_t RAHEZFI F/HEE, wechar_t &
2/ bit HARSZE P E
(gec Hh 32-bit, H E#RAF Unicode TFA748EH e LAY 3%

e
e wchar.h HE L T —4HIEMUT ctype.h TIREHH T
¥ wchar_t
€g. wcslen() - strlen()
wprintf () - printf ()

=% Email: cyfdecyf@gmail.com Internationalization

Standard C and POSIX’s solution

The solution to i18n Unicode

C LIBRARY AND WCHAR_T

o C99 5| AT wchar_t RAHEZFI F/HEE, wechar_t &
2/ bit HARSZE P E
(gec Hh 32-bit, H E#RAF Unicode TFA748EH e LAY 3%

e
e wchar.h HE L T —4HIEMUT ctype.h TIREHH T
¥ wchar_t
€g. wcslen() - strlen()
wprintf () - printf ()

o JIIME—HMTZF Wty F AWM wehar_t FAFHRZIA]
PEATHEI A R AR, X 2L pRER AT A R T locale HYICE:
eg. mbstowcs () (convert wchar_t)

wcstombs (convert to multi-byte string)

=% Email: cyfdecyf@gmail.com Internationalization

Standard C and POSIX’s solution

The solution to i18n Unicode

PRONS AND CONS ABOUT THIS APPROACH

@ prons
e Provides a portable way to handle different character sets
and encodings.
o The user can use different character sets and the
programmer don’t need to care about it.
e Programmers don'’t need to write code to handle character
sets and encodings directly.

=% Email: cyfdecyf@gmail.com Internationalization

Standard C and POSIX’s solution

The solution to i18n Unicode

PRONS AND CONS ABOUT THIS APPROACH

@ prons
e Provides a portable way to handle different character sets
and encodings.
o The user can use different character sets and the
programmer don’t need to care about it.
e Programmers don'’t need to write code to handle character
sets and encodings directly.

@ cons

e The library function needs to handle so many character
sets, it may not be very efficient.

e wchar_t requires more memory.

o Because the above reason, it should not be used to store
text on disk or transport on the net.

e Hard to include characters used in different languages in
the same text file.

=% Email: cyfdecyf@gmail.com Internationalization

The solution to i18n Sta_ndard C and POSIX’s solution
Unicode

OUTLINE

© THE SOLUTION TO 118N

@ Unicode

@ Introduction to Unicode
@ UTF-8 and UTF-16

@ Make your program support Unicode

=% Email: cyfdecyf@gmail.com

Internationalization

Standard C and POSIX’s solution

The solution to i18n Unicode

A LITTLE HISTORY ABOUT UNICODE

Unicode — unique, universal, and uniform character encoding
“Begin at 0 and add the next character”
e The concept of universal code is not new

Xerox Star use 16-bit character encoding in 1981, and
went on 27 languages including Chinese, Japanese.

=% Email: cyfdecyf@gmail.com Internationalization

Standard C and POSIX’s solution

The solution to i18n Unicode

A LITTLE HISTORY ABOUT UNICODE

Unicode — unique, universal, and uniform character encoding
“Begin at 0 and add the next character”
e The concept of universal code is not new

Xerox Star use 16-bit character encoding in 1981, and
went on 27 languages including Chinese, Japanese.

e The need of Unicode begans very early
The story of Mark Davis making up Apple KanjiTalk in 1985

=% Email: cyfdecyf@gmail.com Internationalization

Standard C and POSIX’s solution

The solution to i18n Unicode

A LITTLE HISTORY ABOUT UNICODE

Unicode — unique, universal, and uniform character encoding
“Begin at 0 and add the next character”

e The concept of universal code is not new
Xerox Star use 16-bit character encoding in 1981, and
went on 27 languages including Chinese, Japanese.

e The need of Unicode begans very early
The story of Mark Davis making up Apple KanjiTalk in 1985
e The initial work was done by 3 engineers
Joe Becker(Xerox), Lee Collins(Xerox), Mark Davis(Apple).
This was in 1987.

=% Email: cyfdecyf@gmail.com Internationalization

Standard C and POSIX’s solution

The solution to i18n Unicode

A LITTLE HISTORY ABOUT UNICODE

The latest version of Unicode is 5.0.0
e The beginning of Unicode: Unicode 88

=% Email: cyfdecyf@gmail.com Internationalization

Standard C and POSIX’s solution

The solution to i18n Unicode

A LITTLE HISTORY ABOUT UNICODE

The latest version of Unicode is 5.0.0
e The beginning of Unicode: Unicode 88
e Unifying CJK
In 1988, discussion for the criteria for Han unification
began at the Research Libraryies Group at Palo Alto.

=% Email: cyfdecyf@gmail.com Internationalization

Standard C and POSIX’s solution

The solution to i18n Unicode

A LITTLE HISTORY ABOUT UNICODE

The latest version of Unicode is 5.0.0
e The beginning of Unicode: Unicode 88
e Unifying CJK
In 1988, discussion for the criteria for Han unification
began at the Research Libraryies Group at Palo Alto.
e In 1991, the ISO Working Group responsible for ISO/IEC

10646 and the Unicode Consortium decided to create one
universal standard for coding multilingual text.

=% Email: cyfdecyf@gmail.com Internationalization

Standard C and POSIX’s solution

The solution to i18n Unicode

A LITTLE HISTORY ABOUT UNICODE

The latest version of Unicode is 5.0.0

e The beginning of Unicode: Unicode 88

e Unifying CJK
In 1988, discussion for the criteria for Han unification
began at the Research Libraryies Group at Palo Alto.

e In 1991, the ISO Working Group responsible for ISO/IEC
10646 and the Unicode Consortium decided to create one
universal standard for coding multilingual text.

o Later, major OSes began to support Unicode and more
and more programmers began to use Unicode in their
programs.

=% Email: cyfdecyf@gmail.com Internationalization

Standard C and POSIX’s solution

The solution to i18n Unicode

TECHNICAL DETAILS ON UNICODE

e Unicode vs. 1ISO10646
o 1SO10646 HiE X THHBNFAFMES, & X T 2 P
i UCS-2 il UCS-4, ZMLg R4 F1 Unicode PRIF4E—
o Unicode & S T HAWTE Iz TR s, $24E T e £
SR FAF LR B

=% Email: cyfdecyf@gmail.com Internationalization

Standard C and POSIX’s solution

The solution to i18n Unicode

TECHNICAL DETAILS ON UNICODE

e Unicode vs. ISO10646
o 1SO10646 HiE S 1 HEFNFAFRYMSS, & LT 2 Mo
4 UCS-2 1 UCS-4, ZMLi$ K Z0R Al Unicode fRH748—
o Unicode 5& S 1 HAWTE N5 T U Sih, $4k 1 fnde] i af
R FAE AL R R
e A significant advantage of Unicode
Unicode’s encoding doesn’t use shift states, so a loss of
data in the middle does not corrupt the subsequent
encoded data.

=% Email: cyfdecyf@gmail.com Internationalization

Standard C and POSIX’s solution

The solution to i18n Unicode

TECHNICAL DETAILS ON UNICODE

e Unicode vs. ISO10646
o 1SO10646 HiE S 1 HEFNFAFRYMSS, & LT 2 Mo
4 UCS-2 1 UCS-4, ZMLi$ K Z0R Al Unicode fRH748—
o Unicode 5& S 1 HAWTE N5 T U Sih, $4k 1 fnde] i af
R AR LIRS B
e A significant advantage of Unicode
Unicode’s encoding doesn’t use shift states, so a loss of
data in the middle does not corrupt the subsequent
encoded data.
e A common pitfall — Unicode is 16-bit?
e It’s true in the early days of Unicode
e But Unicode has now defined more than 100,000

characters
e Apparently, it can’t fit into an 16-bit integer

=% Email: cyfdecyf@gmail.com Internationalization

Standard C and POSIX’s solution

The solution to i18n Unicode

THE DIVISION UNICODE

The whole Unicode character set is divided into 17 planes.
e Each plane has 2 characters

=% Email: cyfdecyf@gmail.com Internationalization

Standard C and POSIX’s solution

The solution to i18n Unicode

THE DIVISION UNICODE

The whole Unicode character set is divided into 17 planes.
e Each plane has 2 characters

e Basic Multilingual Plane (BMP)
Plane 0 covers all the characters that can be used by
programmers before Unicode. The coverage of character
is done from west to east.

=% Email: cyfdecyf@gmail.com Internationalization

Standard C and POSIX’s solution

The solution to i18n Unicode

THE DIVISION UNICODE

The whole Unicode character set is divided into 17 planes.

e Each plane has 2 characters

e Basic Multilingual Plane (BMP)
Plane 0 covers all the characters that can be used by
programmers before Unicode. The coverage of character
is done from west to east.

e Astral planes
Plane 1 through 16 contains characters that are not offen
used. eg. Musical symbol, acient Greek

=% Email: cyfdecyf@gmail.com Internationalization

Standard C and POSIX’s solution

The solution to i18n Unicode

THE DIVISION UNICODE

The whole Unicode character set is divided into 17 planes.
e Each plane has 2 characters
e Basic Multilingual Plane (BMP)
Plane 0 covers all the characters that can be used by

programmers before Unicode. The coverage of character
is done from west to east.

e Astral planes
Plane 1 through 16 contains characters that are not offen
used. eg. Musical symbol, acient Greek

e It’'s unlikely you will need to handle characters outside BMP
in the near term, but its unwise to make such assumption.

=% Email: cyfdecyf@gmail.com Internationalization

Standard C and POSIX’s solution

Th luti i N
e solution to i18n Unicode

ABOUT CANONICAL FORM

e A character in Unicode may have more than one
representation.

=% Email: cyfdecyf@gmail.com Internationalization

Standard C and POSIX’s solution

T i i N
he solution to i18n Unicode

ABOUT CANONICAL FORM

e A character in Unicode may have more than one
representation.

e There are such kind of things called combining character
sequence which is a base character followed by any
number of combining characters.

=% Email: cyfdecyf@gmail.com Internationalization

Standard C and POSIX’s solution

Th i i N
e solution to i18n Unicode

ABOUT CANONICAL FORM

e A character in Unicode may have more than one
representation.

e There are such kind of things called combining character
sequence which is a base character followed by any
number of combining characters.

e Different combination can represent the same thing, only
one form of them is called canonical form. (For more
details, refer to Unicode FAQ)

=% Email: cyfdecyf@gmail.com Internationalization

Standard C and POSIX’s solution

T i i N
he solution to i18n Unicode

VARIOUS ENCODINGS FOR UNICODE

UTF stands for UCS Transformation Format, where UCS
stands for Universal (Multi-Octet Coded) Character Set.

e UTF-1 (Not used), UTF-7 (For SMTP)
e UTF-8 (defined in RFC2279)
e UTF-16 (vs. UCS-2, defined in RFC2781)
e UTF-32 (vs. UCS-4)
e UTF-9, UTF-18 (Defined in RFC4042, they are new)
The most widely used encodings now are UTF-8 and UTF-16.

=% Email: cyfdecyf@gmail.com Internationalization

Standard C and POSIX’s solution

The solution to i18n Unicode

OVERVIEW OF UTF-16 ENCODING

UTF-16 encoding is aimed to encode all the characters in BMP
in exacly two octets, and encode all the other characters in the
next 16 planes in exactly four octets.

=% Email: cyfdecyf@gmail.com Internationalization

Standard C and POSIX’s solution

The solution to i18n Unicode

OVERVIEW OF UTF-16 ENCODING

UTF-16 encoding is aimed to encode all the characters in BMP
in exacly two octets, and encode all the other characters in the
next 16 planes in exactly four octets.

The encoding rules:

e Characters with values less than 0x10000 (Those in BMP)
are represented as a 16-bit integer with a value the same
with the character number. (less than 26 characters can
be encoded)

=% Email: cyfdecyf@gmail.com Internationalization

Standard C and POSIX’s solution

The solution to i18n Unicode

UTF-16 ENCODING RULES CONT’

e Characters with values between 0x10000 and Ox10FFFF
are represented with two 16-bit integers.

e High-half one’s value is between 0xD800 and OxDBFF.

o Low-half one’s between 0xDC00 and OxDFFF.
These two blocks are reserved in BMP for use by UTF-16
and are called high and low surrogate area respectively.
(220 characters can be encoded)

=% Email: cyfdecyf@gmail.com Internationalization

Standard C and POSIX’s solution

The solution to i18n Unicode

UTF-16 ENCODING RULES CONT’

e Characters with values between 0x10000 and Ox10FFFF
are represented with two 16-bit integers.

e High-half one’s value is between 0xD800 and OxDBFF.
o Low-half one’s between 0xDC00 and OxDFFF.
These two blocks are reserved in BMP for use by UTF-16

and are called high and low surrogate area respectively.
(220 characters can be encoded)

e Characters with values greater than 0x10FFFF cannot be
encoded in UTF-16. (So UTF-16 can only encode a total of
17 x 216 — 211 characters.)

=% Email: cyfdecyf@gmail.com Internationalization

Standard C and POSIX’s solution

The solution to i18n Unicode

THE ENCODING PROCESS

Encoding characters with value less than 0x10000 is trivial.
For characters larger than 0x10000, denote one as U, the
encoding process is as follows

=% Email: cyfdecyf@gmail.com Internationalization

Standard C and POSIX’s solution

The solution to i18n Unicode

THE ENCODING PROCESS

Encoding characters with value less than 0x10000 is trivial.
For characters larger than 0x10000, denote one as U, the
encoding process is as follows

Q U =U-0x10000 = yyyyyyyyyy XxXXXXXXXX

=% Email: cyfdecyf@gmail.com Internationalization

Standard C and POSIX’s solution

The solution to i18n Unicode

THE ENCODING PROCESS

Encoding characters with value less than 0x10000 is trivial.
For characters larger than 0x10000, denote one as U, the
encoding process is as follows

Q U =U-0x10000 = yyyyyyyyyy XxXXXXXXXX

@ W1=110110 0000000000
W2 =110111 0000000000

=% Email: cyfdecyf@gmail.com Internationalization

Standard C and POSIX’s solution

The solution to i18n Unicode

THE ENCODING PROCESS

Encoding characters with value less than 0x10000 is trivial.
For characters larger than 0x10000, denote one as U, the
encoding process is as follows

Q U =U-0x10000 = yyyyyyyyyy XxXXXXXXXX

@ W1=110110 0000000000
W2 =110111 0000000000

@ W1 =110110 yyyyyyyyvy
W2 = 110111 xxxxxxxxxx

=% Email: cyfdecyf@gmail.com Internationalization

Standard C and POSIX’s solution

T i i N
he solution to i18n Unicode

BIG-ENDIAN OR LITTLE-ENDIAN?

e Since UTF-16 uses 2 bytes as an encoding unit, the
endian problem must be dealt with.

=% Email: cyfdecyf@gmail.com Internationalization

Standard C and POSIX’s solution

The solution to i18n Unicode

BIG-ENDIAN OR LITTLE-ENDIAN?

e Since UTF-16 uses 2 bytes as an encoding unit, the
endian problem must be dealt with.

e OxFFFE can not appear in Unicode while OXFEFF
represents “ZERO WIDTH NON-BREAKING SPACE”. It is
prepended to a Unicode character stream as the Byte
Order Marker (BOM).

e If you encount a two bytes sequence 0xFE 0xFF, the the
encoding is in big-endian.

e If you encount OxFF OxFE, then the encoding is in
little-endian.

=% Email: cyfdecyf@gmail.com Internationalization

Standard C and POSIX’s solution

The solution to i18n Unicode

BIG-ENDIAN OR LITTLE-ENDIAN?

e Since UTF-16 uses 2 bytes as an encoding unit, the
endian problem must be dealt with.

e OxFFFE can not appear in Unicode while OXFEFF
represents “ZERO WIDTH NON-BREAKING SPACE”. It is
prepended to a Unicode character stream as the Byte
Order Marker (BOM).

e If you encount a two bytes sequence 0xFE 0xFF, the the
encoding is in big-endian.

e If you encount OxFF OxFE, then the encoding is in
little-endian.

e UTF-16BE and UTF-16LE are defined to label the UTF-16
encoded files whether they are encoded in big-endian or
little-endian.

=% Email: cyfdecyf@gmail.com Internationalization

Standard C and POSIX’s solution

T i i N
he solution to i18n Unicode

OVERVIEW OF UTF-8 ENCODING

e UTF-8 was originally a project aimed to specify a File
System Safe UCS Transformation Format that is
compatible UNIX system. (Plan 9 is the first one to use
UTF-8 though it’s not UNIX.)

=% Email: cyfdecyf@gmail.com Internationalization

Standard C and POSIX’s solution

The solution to i18n Unicode

OVERVIEW OF UTF-8 ENCODING

e UTF-8 was originally a project aimed to specify a File
System Safe UCS Transformation Format that is
compatible UNIX system. (Plan 9 is the first one to use
UTF-8 though it’s not UNIX.)

e UTF-8 encodes UCS-2 or UCS-4 characters as a varying
number of octets. The number of octets range from 1 to 6.

=% Email: cyfdecyf@gmail.com Internationalization

Standard C and POSIX’s solution

T i i N
he solution to i18n Unicode

OVERVIEW OF UTF-8 ENCODING

e UTF-8 was originally a project aimed to specify a File
System Safe UCS Transformation Format that is
compatible UNIX system. (Plan 9 is the first one to use
UTF-8 though it’s not UNIX.)

e UTF-8 encodes UCS-2 or UCS-4 characters as a varying
number of octets. The number of octets range from 1 to 6.

e Characteristics

e UTF-8 encoded characters are just bytes stream.

e 7-bit US-ASCII characters has the same value defined in
Unicode as they were in the ASCII table.

o US-ASCII values do not appear otherwise in UTF-8
encoded character stream.

=% Email: cyfdecyf@gmail.com Internationalization

The solution to i18n

Standard C and POSIX’s solution
Unicode

How UTF-8 ENCODING IS DONE

Besides ASCII values, the first byte indicates how many bytes
the character takes, the left bytes start with 10.

UCS-4 range (hex.)

0000 0000-0000 007F
0000 0080—-0000 O07FF
0000 0800-0000 FFFF

0001 0000-001F FFFF
0020 0000-03FF FFFF
0400 0000—7FFF FFFF

UTF-8 octet sequence (bin.)

OXXXXXXX
11 0xXXXXX TOXXXXXX
1110xxxX 10XXXXXX TOXXXXXX

11110xxX 1OXXXXXX TOXXXXXX TOXXXXXX
111110xx
1111110x

=% Email: cyfdecyf@gmail.com Internationalization

Standard C and POSIX’s solution

The solution to i18n Unicode

SOME NOTES ON UTF-8 ENCODING

e When converting from UTF-16 to UTF-8 , values between
D800 — DFFF should be special treated. The UTF-16
encoding should be first undone.

e FF and FE will not appear in UTF-8 encoding.

e Security Considerations. Must handle invalid byte stream.
[IS once has secure problem with UTF-8 encoded byte
streams.

=% Email: cyfdecyf@gmail.com Internationalization

Standard C and POSIX’s solution

The solution to i18n Unicode

CHOOSE AN INTERNAL ENCODING — UTF-16

UTF-16
@ pros
e Java, C# use UTF-16 as it’s internal encoding.
o Effecient dealing with Asian characters.

e When you are writing new application and is using Java or
C#, you should consider use UTF-16.

=% Email: cyfdecyf@gmail.com Internationalization

Standard C and POSIX’s solution

The solution to i18n Unicode

CHOOSE AN INTERNAL ENCODING — UTF-16

UTF-16
@ pros
e Java, C# use UTF-16 as it’s internal encoding.
o Effecient dealing with Asian characters.
e When you are writing new application and is using Java or
C#, you should consider use UTF-16.
@ cons
e Uncompatible with already existing C libraries.
e When converting old programs to use Unicode, lots of
change are needed.

=% Email: cyfdecyf@gmail.com Internationalization

Standard C and POSIX’s solution

T i i N
he solution to i18n Unicode

CHOOSE AN INTERNAL ENCODING — UTF-8

UTF-8
@ pros

e C programs appreciate UTF-8 since there are no portable
way to define an 16-bit integer in C.

o Compatible with UNIX system’s most library.

e When you are modifying old programs to support unicode,
using UTF-8 only need small changes. Some even need no
change. (eg. cat, echo)

=% Email: cyfdecyf@gmail.com Internationalization

Standard C and POSIX’s solution

The solution to i18n Unicode

CHOOSE AN INTERNAL ENCODING — UTF-8

UTF-8
@ pros

e C programs appreciate UTF-8 since there are no portable
way to define an 16-bit integer in C.

o Compatible with UNIX system’s most library.

e When you are modifying old programs to support unicode,
using UTF-8 only need small changes. Some even need no
change. (eg. cat, echo)

@ cons

e When dealing lots of Asian character, it’s not so effecient.

o To locate a specific character in the bytes stream, you need
to iterate from the start of the stream. (UTF-16 also have
the problem, less serious.)

=% Email: cyfdecyf@gmail.com Internationalization

Standard C and POSIX’s solution

The solution to i18n Unicode

OTHER CONSIDERATION

e What encoding does your library support
eg. The ncurses library.

=% Email: cyfdecyf@gmail.com Internationalization

Standard C and POSIX’s solution

Th i i N
e solution to i18n Unicode

OTHER CONSIDERATION

e What encoding does your library support
eg. The ncurses library.
e Convert external encoding into internal encoding
e User’s input, files etc. may not be encoded as the same
with your internal encoding.
e iconv () can convert the byte streams between various
encodings.

=% Email: cyfdecyf@gmail.com Internationalization

Standard C and POSIX’s solution

Th i i N
e solution to i18n Unicode

OTHER CONSIDERATION

e What encoding does your library support
eg. The ncurses library.
e Convert external encoding into internal encoding

e User’s input, files etc. may not be encoded as the same
with your internal encoding.

e iconv () can convert the byte streams between various
encodings.

e User input is not one byte a time now! It’s multi-byte a time.

=% Email: cyfdecyf@gmail.com Internationalization

Standard C and POSIX’s solution

Th i i N
e solution to i18n Unicode

OTHER CONSIDERATION

e What encoding does your library support
eg. The ncurses library.
e Convert external encoding into internal encoding

e User’s input, files etc. may not be encoded as the same
with your internal encoding.

e iconv () can convert the byte streams between various
encodings.

e User input is not one byte a time now! It’s multi-byte a time.

e Do you need to treat wide characters specially?
eg. In ncurses library, wide characters take two cursor
positions.

=% Email: cyfdecyf@gmail.com Internationalization

Standard C and POSIX’s solution

The solution to i18n Unicode

SOME LIBRARIES THAT CAN BE USED TO HANDLE
UNICODE

e Glib

e One of the fundamental libraries for the GNOME project,
provides various routines to deal with UTF-8, UTF-16
encoded characters.

e Very handy if you are using C since it also provides many
useful data structure and other things.

=% Email: cyfdecyf@gmail.com Internationalization

Standard C and POSIX’s solution

The solution to i18n Unicode

SOME LIBRARIES THAT CAN BE USED TO HANDLE
UNICODE

e Glib

e One of the fundamental libraries for the GNOME project,
provides various routines to deal with UTF-8, UTF-16
encoded characters.

e Very handy if you are using C since it also provides many
useful data structure and other things.

e ICU — International Components for Unicode

e From IBM, now open sourced.

e Supports C/C++, Java.

e Powerful and feature rich. Has support for Unicode
bi-direction algorithm.

=% Email: cyfdecyf@gmail.com Internationalization

Overview of getext
How to use gettext
110n using gettext Other libraries or tools for I110n

OUTLINE

© L10N USING GETTEXT
@ Overview of getext
e How to use gettext
@ Other libraries or tools for [10n

=% Email: cyfdecyf@gmail.com Internationalization

Overview of getext
How to use gettext
110n using gettext Other libraries or tools for I110n

OUTLINE

© L10N USING GETTEXT
@ Overview of getext

cyfdecyf@gmail.com Internationalization

Overview of getext
How to use gettext
110n using gettext Other libraries or tools for I110n

INTRODUCTION TO GETTEXT

Making your program support Unicode is just the i18n part.
The second part is 110n, provides locale specific infomation for
the program.

e POSIX standardized catgets, but it's hard to use.

e gettext is the de facto standard in the GNU world, based
on a design originally done by Sun for Solaris.

e gettext can translate program message into different
languages at runtime.

=% Email: cyfdecyf@gmail.com Internationalization

Overview of getext
How to use gettext
110n using gettext Other libraries or tools for I110n

TRASLATION MECHANISM AND FUNCTIONS

The translation mechanism is to use the string that appears in
the source code as the key, look up the translated message
from some file.

=% Email: cyfdecyf@gmail.com Internationalization

Overview of getext
How to use gettext
110n using gettext Other libraries or tools for I110n

TRASLATION MECHANISM AND FUNCTIONS

The translation mechanism is to use the string that appears in
the source code as the key, look up the translated message
from some file.

@ textdomain () is used to pick up the file which contains
the translated message for the application.

e gettext () is responsible for looking up the the translated
message by the key. It's used against literature strings in
the source code.

=% Email: cyfdecyf@gmail.com Internationalization

Overview of getext
How to use gettext
110n using gettext Other libraries or tools for I110n

OTHER FUNCTIONS AND TOOLS

@ bindtextdomain () is used to specify the directory in
which may contain the message file. The default directory
is in /usr/share/locale. Use this when you are testing and.

=% Email: cyfdecyf@gmail.com Internationalization

Overview of getext
How to use gettext
110n using gettext Other libraries or tools for I110n

OTHER FUNCTIONS AND TOOLS

@ bindtextdomain () is used to specify the directory in
which may contain the message file. The default directory
is in /usr/share/locale. Use this when you are testing and.

@ xgettext is used to extract all the string need to be
translated.

e msgfmt is used to compile the translated message into
binary file that can be used by gettext ().

=% Email: cyfdecyf@gmail.com Internationalization

Overview of getext
How to use gettext
110n using gettext Other libraries or tools for I110n

OUTLINE

© L10N USING GETTEXT

e How to use gettext

cyfdecyf@gmail.com Internationalization

Overview of getext
How to use gettext
110n using gettext Other libraries or tools for I110n

STEPS USING GETTEXT

© Adopt the gettext.h header file into your application. Add
the following definition to a header file included by all your
C source files.
#define ENABLE_NLS 1
#include "gettext.h"
#define _ (msgid) gettext (msgid)
#define N_ (msgid) msgid
The last two macros are just convention, but they also
make your life easier when you want to do the translation.

=% Email: cyfdecyf@gmail.com Internationalization

Overview of getext
How to use gettext
110n using gettext Other libraries or tools for I110n

STEPS USING GETTEXT CONT’

@ Call setlocale () as appropriate. The easiest is call
setlocale (LC_ALL, "").

=% Email: cyfdecyf@gmail.com Internationalization

Overview of getext
How to use gettext
110n using gettext Other libraries or tools for I110n

STEPS USING GETTEXT CONT’

@ Call setlocale () as appropriate. The easiest is call
setlocale (LC_ALL, "").

© Pick a text domain for the application and set it with
textdomain ().

=% Email: cyfdecyf@gmail.com Internationalization

Overview of getext
How to use gettext
110n using gettext Other libraries or tools for I110n

STEPS USING GETTEXT CONT’

@ Call setlocale () as appropriate. The easiest is call
setlocale (LC_ALL, "").

© Pick a text domain for the application and set it with
textdomain ().

Q Iftesting, call bindtextdomain () and bind the text
domain to a particular directory.

=% Email: cyfdecyf@gmail.com Internationalization

Overview of getext
How to use gettext
110n using gettext Other libraries or tools for I110n

STEPS USING GETTEXT CONT’

@ Call setlocale () as appropriate. The easiest is call
setlocale (LC_ALL, "").

© Pick a text domain for the application and set it with
textdomain ().

Q Iftesting, call bindtextdomain () and bind the text
domain to a particular directory.

@ Usestrfmon(), strftime () andthe ’ flag for
printf () as appropriate.

=% Email: cyfdecyf@gmail.com Internationalization

Overview of getext
How to use gettext
110n using gettext Other libraries or tools for I110n

STEPS USING GETTEXT CONT’

O Mark all static literature strings use N__ (), other literature
strings use _ () (Of course, you only need to mark the
strings that need to be translated.)

=% Email: cyfdecyf@gmail.com Internationalization

Overview of getext
How to use gettext
110n using gettext Other libraries or tools for I110n

STEPS USING GETTEXT CONT’

O Mark all static literature strings use N__ (), other literature
strings use _ () (Of course, you only need to mark the
strings that need to be translated.)

@ Use xgettext to extract strings needs to be translated.
$ xgettext —-k=_ —-k=N_ \
> —default-domain=domainname x.cC
You will get a file domainname. po.

=% Email: cyfdecyf@gmail.com Internationalization

Overview of getext
How to use gettext
110n using gettext Other libraries or tools for I110n

STEPS USING GETTEXT CONT’

© Make a copy of domainname.po, say foo.po and
translate all the messages in that file.

=% Email: cyfdecyf@gmail.com Internationalization

Overview of getext
How to use gettext
110n using gettext Other libraries or tools for I110n

STEPS USING GETTEXT CONT’

© Make a copy of domainname.po, say foo.po and
translate all the messages in that file.

@ Use msgfmt to compile foo.po.
$ msgfmt foo.po -o domainname.mo
Then you can put it to the right place and test it or use it.
eg. Put it to /usr/share/locale/zh_CN/LC_MESSAGES if
your translation is for Chinese. If testing, put it at
Jzh_CN/LC_MESSAGES.

=% Email: cyfdecyf@gmail.com Internationalization

Overview of getext
How to use gettext
110n using gettext Other libraries or tools for 110n

OUTLINE

© L10N USING GETTEXT

@ Other libraries or tools for [10n

cyfdecyf@gmail.com Internationalization

Overview of getext
How to use gettext
110n using gettext Other libraries or tools for 110n

OTHER LIBRARIES OR TOOLS FOR L10N

Each major user interface toolkit has itw own way to solve the
problem of 110n. gettext is for command line interface.
o Qt
Mark all literature string using tr () and use Linguist to do
the translation.
e Pango
It's the core of text and font handling for GTK+-2.x.
e ICU
It also provides methods for 110n.

=% Email: cyfdecyf@gmail.com Internationalization

Overview of getext
How to use gettext
110n using gettext Other libraries or tools for 110n

REFERENCES AND ONLINE RESOURCES

[
B
B
[
[
[

Arnold Robbins, Linux Programming by Example.
Unicode, Inc. Ten years of Unicode 1988 - 1998.
Tim Bray, On the goodness of Unicode.

Tim Bray, Characters vs. Bytes.

IETF RFC2279, UTF-8, a transformation format of ISO
10646

IETF RFC2781, UTF-16, an encoding of ISO 10646

=% Email: cyfdecyf@gmail.com Internationalization

Overview of getext
How to use gettext

110n using gettext Other libraries or tools for 110n

118n your program from now on

Thanks for your time

=% Email: cyfdecyf@gmail.com Internationalization

	Introduction
	Background information

	The solution to i18n
	Standard C and POSIX's solution
	Unicode

	l10n using gettext
	Overview of getext
	How to use gettext
	Other libraries or tools for l10n

